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Abstract—The Internet of Things (IoT) is connecting people and
smart devices on a scale that was once unimaginable. One major
challenge for the IoT is to handle vast amount of sensing data
generated from the smart devices that are resource-limited and
subject to missing data due to link or node failures. By exploring
cloud computing with the IoT, we present a cloud-based solution
that takes into account the link quality and spatio-temporal corre-
lation of data to minimize energy consumption by selecting sensors
for sampling and relaying data. We propose a multiphase adaptive
sensing algorithm with belief propagation (BP) protocol (ASBP),
which can provide high data quality and reduce energy consump-
tion by turning on only a small number of nodes in the network.
We formulate the sensor selection problem and solve it using both
constraint programming (CP) and greedy search. We then use our
message passing algorithm (BP) for performing inference to recon-
struct the missing sensing data. ASBP is evaluated based on the
data collected from real sensors. The results show that while main-
taining a satisfactory level of data quality and prediction accuracy,
ASBP can provide load balancing among sensors successfully and
preserves 80% more energy compared with the case where all
sensor nodes are actively involved.

Index Terms—Belief propagation, constraint optimization,
Internet of Things (IoT), quantization, wireless sensor networks.

I. INTRODUCTION

T HE INTERNET has enabled an explosive growth of infor-
mation sharing. With the advent of embedded and sensing

technology, the number of smart devices including sensors,
mobile phones, RF identifications (RFIDs), and smart grids
has grown rapidly in recent years. Ericsson and Cisco pre-
dicted that 50 billion small embedded sensors and actuators
will be connected to the Internet by 2020 [1] forming a new
Internet paradigm called Internet of Things (IoT). IoT can sup-
port a wide range of applications in different domains, such as
health care, smart cities, pollution monitoring, transportation
and logistics, factory process optimization, home safety and
security [2], [3].

In the past decade, many studies have contributed to
the hardware, software, and protocol design of the smart
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devices, such as wireless sensor networks (WSNs) [4]–[6].
Machine-to-machine automation with wireless sensors is being
widely deployed, but usually in islands of disparate systems.
The evolution of IoT attempts to connect these existing sys-
tems to the cloud, which enables advanced data fusion, storage,
and coordination capability for achieving higher data quality
and energy efficiency. The upcoming challenge of IoT lies in
handling volumes of data generated from enormous amount of
devices, which is known as the big data problem.

The wireless sensors in many IoT applications are bat-
tery powered, resulting in extreme energy constraints on their
operations, such as sampling, data processing and radio com-
munications. To conserve energy and achieve longer network
lifetime, the costs of sensor sampling, processing, and radio
communications have to be minimized. It is often the case that
sensor readings in the same spatial regions are highly corre-
lated. Depending on the application, the sensor readings are
temporally correlated as well. By leveraging the computation
capability of the cloud, data fusion can be performed to increase
the data quality by exploring the spatial and temporal cor-
relation of data. The wireless sensors can be coordinated by
the cloud to be ON and OFF according to the change in the
environment. In this paper, we explore a seamless solution by
integrating cloud and IoT to provide comprehensive data fusion
and coordination of sensors to improve data quality and reduce
energy consumption.

Belief propagation (BP) [7]–[9] is a technique for solving
inference problems. In the IoT context, the belief of a sensor
node is the data measurement of an event in the environment,
and BP provides an iterative algorithm (also called the sum-
product algorithm) to infer the measurements of the sensor
nodes, especially in cases where the data are missing, because
of packet losses or because there are no data available at some
selectively disabled sensor nodes (mainly to conserve energy
and reduce radio inference). In BP, each sensor node deter-
mines its belief by incorporating its local measurement with the
beliefs of its neighbor sensor nodes (spatial cooperation), and
its beliefs obtained in the past (temporal cooperation). In such
inference problems, the assumption that the data are spatio-
temporally correlated significantly improves the accuracy of
data inference using BP in WSNs.

In monitoring applications for the IoT, the data are collected
and put in an environment matrix (EM) [10], where the data
readings for each sensor node are stored in one row of the
matrix and each column index represents a timestamp for the
interval at which the data were sampled. Hence, an EM is a
matrix of size N × T where N is the number of sensor nodes
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and T the number of time intervals, and the time dimension
T is expanding as more data are collected. BP performs the
inference iteratively from the stream of data that are stored in
EM based on the current and past data. Therefore, unlike the
compressed sensing (CS) [11] approach, BP does not require
a complete EM for the whole duration of the time interval to
perform inference.

In this paper, we explore cloud-assisted adaptive sensing and
data fusion to reduce energy consumption and improve data
quality for the IoT. We propose an adaptive sensing BP protocol
(ASBP), where the data are collected in several rounds (a round
is a fixed time interval where the network repeats the same
behavior) by active sensors (sensors that are collecting data in
each round). We formulate and solve an optimization problem
that selects the active sensors in each round, by maximizing the
data utility while maintaining energy load balancing. We define
data utility as the sum of the qualities of the path links from
the selected active sensor nodes to the base station, subtracted
by the sum of the correlations of the selected active sensors.
If the selected active sensor nodes are located on a path with
greater link quality, then the value of the data utility increases.
Likewise, if the selected active sensor nodes result in a lower
data correlation, then the data utility is increased. In each round
of ASBP, the minimum number of selected active sensor nodes
(which is a parameter of our sensor selection optimization prob-
lem) is adaptively tuned based on the performance of the BP
inference (data prediction accuracy) throughout the previous
round. In addition to BP, we also use data quantization to further
compress the data and reduce the transmission costs.

In our active sensor selection formulation, we consider non-
linear multihop routing protocol constraints. To model the
sensor selection problem effectively, we use both constraint
programming (CP) [12] and heuristic-based greedy algorithm.
CP is a powerful framework to model and solve combinatorial
problems. A CP model consists of variables, variable domains,
and constraints, as well as objective function (if required), in
which the constraints express the relation between the variables.
The core concept in CP is constraint propagation. Constraint
propagation performs reasoning on a subset of variables, vari-
able domains, and constraints to infer more restrictive variable
domains, such that the restricted domains still contain all solu-
tions to the problem. CP combines constraint propagation with
search procedure to find a local or global optimum (using
branch-and-bound search space exploration) to an optimization
problem.

The contributions of this paper are as follows.
1) We present a novel data collection scheme (ASBP) that

utilizes highly correlated spatio-temporal data in the net-
work and uses BP to reconstruct the missing data due to
packet losses and the sensor selection strategy.

2) We formulate the active sensor selection optimization
problem, and propose two approaches, namely CP and
a heuristic-based greedy algorithm to solve the problem.
The CP approach solves the problem to optimality.

3) We conduct extensive simulation with a real deploy-
ment of a sensor network and the collected data to
evaluate the impact of our proposed solution (for both
CP and heuristic-based algorithm) on the overall energy

consumption, data utility, and accuracy (error prediction
of the missing data).

This paper is organized as follows. In Section II, we dis-
cuss the related work. In Section III, we give the system
overview. In Section IV, we describe the formulation of our
optimization problem on sensor selection, and we solve it using
two approaches (CP and heuristic-based greedy algorithm). In
Section VI, we conduct simulations to evaluate our solutions
based on a real deployment of a WSN. Finally, we summarize
and conclude this paper in Section VII.

II. RELATED WORK

The information industry benefits greatly from the techno-
logical advancements brought by the IoT [13], [14]. The IoT
creates a bridge between many available and recent technolo-
gies, such as WSNs, cloud computing, and information sensing
[14]–[16]. In monitoring and data acquisition IoT-based sys-
tems, it is necessary to collect data effectively and efficiently
[14], [15], [17], [18]. The IoT provides a platform for WSNs
to connect to Internet and benefit from the power of cloud
computing and data fusion. Therefore, it is necessary to study
data collection schemes that can seamlessly integrate with the
cloud and IoT systems. Data collection has been widely studied
for stationary WSNs. Gnawali et al. [19] present the state-
of-the-art routing protocol for a sensor network where the
nodes are forwarding data directly to a sink. They consider
stationary WSNs that have static routes from the wireless sen-
sors to the sink. Madden et al. [20] introduced a distributed
query processing paradigm called acquisitional query process-
ing (ACQP) for sensor network data collection. The goal was to
ensure a flexible tasking of motes via a relational query inter-
face, while providing lifetime constraints, data prioritisation,
event batching, and rate adaptation.

Prediction-based energy-efficient approaches aim at predict-
ing the data to minimize the number of transmissions. Chou
et al. [21] proposed a distributed compression based on source
coding, which highly relies on the correlation of the data, and
it compresses the sensor readings with respect to the sensor
past readings, and the reading measured by the other sensor
nodes. They used adaptive prediction to track the correla-
tion of the data, which is used to estimate the number of
bits needed in source coding for data compression. Recent
work in WSN addressed the use of compressive sensing [11].
The authors use compressive sensing to exploit the tempo-
ral stability, spatial correlation, and the low-rank structure of
the EM. They propose an environmental space–time-improved
compressive sensing (ESTI-CS) algorithm to improve the miss-
ing data estimation. Although compressive sensing achieved
good accuracy on the estimation of the missing data, it does
only consider implicit spatio-temporal correlation in the data.
Furthermore, compressive sensing approaches rely on the con-
struction of a data matrix and thus require the synchronization
of the sensors on the data collection. However, in our work,
we present a BP approach for the prediction of missing data,
where the spatio-temporal correlation is explicitly enforced and
the inference is performed online and iteratively as the data are
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Fig. 1. Network architecture, where the nodes in an IoT application forward
the data to the cloud. The servers perform node coordination to improve data
quality and save energy, while the data centers stores the collected data as the
data fusion and the data loss prediction is performed.

received at the base station. In addition to the above, to the
best of our knowledge, there has been no work addressing a
CP approach for energy-efficient sensor selection with dynamic
routing, while considering the link quality and correlation of the
data.

III. SYSTEM OVERVIEW

A. Network Model

In our IoT application, stationary sensor nodes collect envi-
ronmental data, such as temperature, humidity, light intensity,
and noise level. Fig. 1 shows the network architecture of our
data collection in IoT applications. We support heterogenous
networks, where data can be collected from various devices.
The network supports multihop routing and the gateways col-
lect the data and forward the data to the cloud, where the data
fusion is performed to further analyze the data, predict miss-
ing data, and store the data in the data centers. The computation
power of the servers in the cloud is used to improve data quality
and save energy of the sensor nodes using our ASBP protocol
(to be discussed further in Section III-B). The sensor nodes peri-
odically sample data, which is forwarded to the cloud using a
multihop routing protocol (the ACQP system in TinyDB [20],
or the collection tree protocol [19]). In this work, we use the
real data collected at the Intel Berkeley Research Lab [22].
Fig. 2 shows the map of the Intel Berkeley Research Lab, and
the location of the deployed sensor nodes, which are marked
with hexagon shapes, and the sensor id. The link thickness
between the sensor nodes represents the value of the link quality
aggregated throughout the experiment.

The data are collected at the cloud using the gateways associ-
ated with different applications of IoT. The gateway only relays
the data to the servers in the cloud, and it is at least aware of
the routing tables of the sensor nodes. In this paper, we refer to
the gateway and the base station as the same entity; however,
the actual computations (the CP solver and greedy algorithm in
Sections IV-A and IV-B) are performed on the cloud, and all
coordinations are relayed by the gateway.

Fig. 2. Map of the Intel Berkeley Research Lab, with the hexagon-shaped
nodes indicating the locations and the ids of the sensor nodes, which are
deployed to monitor temperature, humidity, and light intensity. The value of the
aggregated link quality is represented with the thickness of the link between the
sensor nodes.

B. Protocol Design

In our setup, the sensor nodes collect and report the data peri-
odically (typically every 30 s). Our protocol operates in several
rounds (a round is a time interval where the network repeats
the same behavior), and each round includes two phases. The
first phase is used to collect the minimum required information,
which is used in the second phase to improve energy-efficiency,
energy load balancing, and the data quality. The two phases in
each round are as follows.

Phase 1: Phase one begins as all sensor nodes become active,
and starts collecting and forwarding a fixed number of quan-
tized data to the base station (typically 20 sensor readings).
Throughout this phase, the routing protocol estimates the link
quality for the shortest routes between the sensor nodes and
the base station. The base station then computes the corre-
lation coefficient matrix from the sensor data, and also uses
the routing tables to compute all the shortest paths from the
sensor nodes to the base station. These data (link quality, cor-
relation, and shortest routes) are then used as an input to solve
our sensor selection optimization problem (further explained in
Section IV) and select a subset of sensor nodes to be active
during the second phase. The active sensor nodes are the only
sensor nodes in the network that are participating in the data
collection and relaying the data to the base station. The sensor
selection problem is solved using either CP or a heuristic-based
greedy algorithm to select a set of active sensor nodes, such that
it maximizes the spatio-temporal correlation with the inactive
sensor nodes, while considering link quality and the dynamic
routing.

Phase 2: The base station broadcast, a message that informs a
subset of the sensor nodes to become inactive (sleep mode with
no radio activity) for a given period of time (typically 2 h). In
this phase, the base station performs the BP algorithm [8], [9] to
infer incrementally the missing data due to the inactive sensor
nodes and packet losses (further explained in Section V). BP
captures the high spatio-temporal correlation in the data using
a graphical model, which is taken into account in modeling our
sensor selection optimization problem. As the second phase is
completed, the base station continues to use BP during the first
phase of the next round. This allows us to compare the infer-
ence results during the first phase with the ground truth, and to
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compute the error in prediction. This error is then used by our
protocol to give feedback (on the minimum number of selected
sensor nodes) to the sensor selection optimization problem of
the next round. This allows a dynamic control over the accu-
racy of the data prediction in phase two. Throughout this paper,
we say ASBP to refer to the protocol design above.

IV. PROBLEM FORMULATION

We present our CP model for the sensor selection prob-
lem, followed by our heuristic-based greedy algorithm. The CP
model finds a global optimum solution to the problem, whereas
our heuristic-based algorithm finds a good quality local opti-
mum solution. The CP model selects the routes for packet relays
dynamically. Dynamic routing is essential for networks with
multiple shortest paths to the base station, large varieties in
the link quality, and energy-efficiency concerns. However, a
heuristic-based greedy algorithm with good quality solutions
is well suited for networks where the sensor selection problem
cannot be solved in a centralized way, and data accuracy is of
less concern.

A. CP Model With Dynamic Routing

As we mentioned in Section III-B, throughout phase one of
ASBP, the data are collected in the EM, which is used to com-
pute the correlation coefficient matrix. We also estimate the link
quality from the packet reception rate during phase one. We
then have the following constants in our sensor selection model.

1) Let S be the set of WSN sensor nodes, with |S| = N .
2) Let L[s1, s2] be the link quality between neighbor sensor

nodes s1 and s2, indicating the probability of receiving a
packet sent from s1 to s2, with s1, s2 ∈ S. If s1 is not the
direct neighbor of s2, then L[s1, s2] = 0.

3) Let B[s] be the link quality between the base station and
a direct neighbor sensor node s, and otherwise B[s] = 0.

4) Let C[s1, s2] be the absolute value of the correlation of
the data between sensor nodes s1 and s2, with C[s1, s2] ∈
[0, 1].

5) Let P [s] be the set of all shortest paths from the sensor
s to the base station, where a path p ∈ P [s] of length n
is denoted by p : 〈(s1, s2), (s2, s3), · · · , (sn−1, sn)〉 with
s1 = s and sn is directly linked to the base station.

6) Let E[s] be the residual energy of the sensor s at the end
of the first phase in ASBP protocol.

Let x[s] be a Boolean variable with value 1 if the sensor
node s is selected for the data collection, and 0 otherwise. Let
q[s] represent the maximum achievable path quality among all
possible shortest paths from sensor s to the base station, in a
solution to the sensor selection problem.

We require the maximization of the path quality

maximize
∑
s∈S

x[s] · q[s]. (1)

A second objective is to minimize the correlation of the data
between the selected sensors. This objective implies that data
from the inactive sensors are more likely to have a high corre-
lation with the enabled sensors, hence improving the accuracy

Fig. 3. Sensor node 1 sending data to the base station B.

of the missing data construction

minimize
∑

s,s′∈S,
s �=s′

x[s] · x[s′] · C[s, s′]. (2)

We define the data utility u[s] to be the weighted linear sum of
the two objective terms in (1) and (2) for sensor s

∀s ∈ S, u[s] = ω1 · x[s] · q[s]
− ω2 ·

∑
s′∈S,
s′ �=s

x[s] · x[s′] · C[s, s′] (3)

where ω1 and ω2 are non-negative weight coefficients used to
normalize and allow preference adjustment between the path
quality and the aggregated correlation of the data for sensor s
versus all the other sensors in the network.

The combined objective considering the data utility u[s] and
the residual energy E[s] of the sensor nodes becomes

maximize
∑
s∈S

E[s]α · u[s] (4)

where α is a parameter to adjust the weight of the energy
coefficient on the data utility (typically α is set to 0.5).

The path quality constraint enforces that the path quality q[s]
from a selected sensor to the base station must exceed a given
threshold τ

∀s ∈ S, q[s] ≥ x[s] · τ (5)

where the threshold τ is adjusted according to the link quality
to provide a consistent packet delivery on a path to the base
station (typically τ ∈ [0.3, 0.7]).

The routing constraint enforces that a path with higher qual-
ity is preferred in selecting the active sensors and all sensors on
such a path must be active. For example, Fig. 3 shows two paths
p1 and p2 from sensor node 1 to the base station B. We assume
that the link quality between sensor nodes on a path to the base
station is an independent random variable. Therefore, path qual-
ity is the joint probability of the link quality probabilities along
a path to the base station

qp1
[1] = L[1, 5] · L[5, 6] · L[6, 4] ·B[4]

= 0.78 · 0.88 · 0.65 · 0.91
= 0.406

qp2
[1] = L[1, 5] · L[5, 6] · L[6, 4] ·B[4]

= 0.86 · 0.75 · 0.66 · 0.91
= 0.387
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where qpi
[s] denotes the path quality of the path pi originated at

sensor s. The path p1 has a higher path quality (qp1
[1] > qp2

[1]).
Hence, when maximizing the path quality (1), the path p1 is
preferred for routing the data, and to enforce that all sensors on
the path must be selected, the path quality q1 is constructed as
follows:

q[1] = max (x[5] · x[6] · x[4] · qp1
[1], x[2] · x[3] · x[4] · qp2

[1]) .
(6)

Assuming that sensor 1 is selected (x[1] = 1), the path qual-
ity constraint (5) requires that q[1] ≥ τ > 0, and according to
(6), all sensors on either path p1 or p2 must be active (x[5] =
x[6] = x[4] = 1 or x[2] = x[3] = x[4] = 1). Note that the rout-
ing constraint (6) must be enforced only if the origin sensor 1
is selected (x[1] = 1), and otherwise the value of the path link
should not be included in the objective function (4). Therefore,
the nonlinear term x[s] · q[s] is used in the construction of data
utility (3). In general, the routing constraint becomes ∀s ∈ S

q[s] = max
p∈P [s]

⎛
⎝B[np] ·

∏
(s′,s′′)∈p

(x[s′′] · L[s′, s′′])
⎞
⎠ (7)

where np is the last sensor on the path p, and s′, s′′ are two adja-
cent sensors on the path p. For example, in Fig. 3 for the paths
p1 and p2, we have np1

= np2
= 4. The n-ary constraint max

is essential in our CP implementation of the routing constraints
(7).

The active sensor constraint enforces that the minimum
number of active sensors is at least μ∑

s∈S

x[s] ≥ μ (8)

where μ provides a tradeoff between energy efficiency and data
quality (BP inference error).

In summary, our CP model for the sensor selection problem
is defined as follows.

Inputs:
1) L: link quality estimations;
2) B: base station link quality estimations;
3) C: correlation coefficient matrix;
4) P : shortest routes to the base station;
5) E: residual energy.
Outputs:
1) x: selected sensors with x[s] = 1 iff sensor s is selected

for data collection and x[s] = 0 otherwise;
2) u[s]: data utility of sensor node s;
3) q[s]: path quality achieved in the routing of data from

sensor node s to the base station.
Objective:

maximize
∑
s∈S

E[s]α · u[s].

Such that

∀s ∈ S, u[s] = ω1 · x[s] · q[s]
− ω2 ·

∑
s′∈S,
s′ �=s

x[s] · x[s′] · C[s, s′]

∀s ∈ S q[s] = max
p∈P [s]

⎛
⎝B[np] ·

∏
(s′,s′′)∈p

(x[s′′] · L[s′, s′′])
⎞
⎠

∀s ∈ S, q[s] ≥ x[s] · τ∑
s∈S

x[s] ≥ μ.

This CP model is directly expressed and solved in our chosen
CP solver without further transformation to the formulation. For
our CP implementation of this model, we derive implied con-
straints from the routing constraints (7), to reduce the search
effort needed to solve the problem. We observe that some sensor
nodes are often shared along the shortest paths from the origin
sensor node s to the base station. For example, in Fig. 3, sensor
node 4 is shared by both paths p1 and p2. If sensor node 1 is
selected, it implies that sensor 4 must be also selected regard-
less of which path is used in forwarding the data to the base
station. We incorporate these implied constraints in our model
to help improve the performance of the solver

∀s ∈ S, (x[s] = 1) =⇒ (∧s′∈P∩[s]x[s
′]
)
= 1 (9)

where P∩[s] is the intersection set of all sensor nodes on the
paths from s to the base station. The implication (9) states that
if the sensor node s is selected (x[s] = 1), then the conjunction
of all shared sensor nodes on the paths from s to the base station
must be 1, enforcing that all the shared sensor nodes are part of
the solution (x[s′] = 1, s′ ∈ P∩[s]).

Our custom search procedure branches on the x[s] decision
variables. It selects a sensor with the largest mid-value in the
domain of the data utility u[s]. The mid-value is often a better
choice when the domain range is large, which is the case at the
beginning of the search. The search procedure breaks ties by
selecting the closest sensor to the base station with hop-count
as the metric. We then set the value of x[s] to 1 on the left
branch and 0 on the right branch.

B. Heuristic-Based Greedy Algorithm

Instead of using CP to solve the sensor selection problem
optimally as described above, we also designed a heuristic-
based algorithm built upon a simple greedy search strategy. The
intuition behind is that we should remove a sensor if: 1) the data
from the sensor are strongly correlated with the others, mean-
ing that we can predict fairly accurately the reading from that
sensor; 2) the sensor is already overused, meaning that the sen-
sor has a low energy; and 3) the sensor has a poor connection to
the base station, meaning that the data transmission from that
sensor has a high risk to fail. Thus, we do a greedy selection
by taking all three aspects into consideration and remove sen-
sors one by one until we are left with the required number of
sensors. While simple, the heuristic algorithm may only find a
local optimum to the sensor selection problem, which might be
far from the global optimum.

Our heuristic algorithm returns a set idSelected of sensor
nodes to be selected during the phase two of each round in
ASBP protocol. The algorithm takes the constant set of sensor
nodes S, link quality L, base station link quality B, correlation
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Algorithm 1. The heuristic-based greedy algorithm with
dynamic routing

input: S,L,B,C,E, μ, τ
output: idSelected

1 idSelected← S
2 q ← BestShortestPath(L,B)
3 idNonReachable← {s ∈ S|q[s] < τ}
4 idSelected← idSelected− idNonReachable
5 SetZero(L, idNonReachable)
6 SetZero(B, idNonReachable)
7 SetZero(C, idNonReachable)
8 idFeasible← idSelected
9 while idFeasible 
= ∅ ∧ |idSelected| > μ do

–

10 L′ ← L
11 B′ ← B

12 {idMin} ← min

(
arg min

s∈idFeasible
(E[s]α · u[s])

)
13 SetZero(L′, {idMin})
14 SetZero(B′, {idMin})
15 q ← BestShortestPath(L′, B′)
16 idNonReachable← idSelected ∩ {s ∈ S|q[s] < τ}
17 idPotential← idSelected− idNonReachable
18 if |idPotential| < μ then

–

19 idFeasible← idFeasible− {idMin}
20 continue

21 idSelected← idPotential
22 idFeasible← idPotential
23 SetZero(L, idNonReachable)
24 SetZero(B, idNonReachable)
25 SetZero(C, idNonReachable)

26 return idSelected

C, and initial energy E as an input, in addition to the parameters
μ and τ representing the minimum threshold on the number of
selected sensors and the link quality, respectively. Our heuristic-
based algorithm is listed in Algorithm 1. In our algorithm, the
identifier of a variable is written with italic font, and the iden-
tifier of a function is written with typewriter font. Here, the
variables are imperative programming variables as opposed to
the CP decision variables of Section IV-A.

The heuristic algorithm creates a set of selected sensors
idSelected (line 1), and initialize it with all the possible sen-
sor ids. The function BestShortestPath (line 2) takes the
link quality matrix L and base station link quality array B
as an input, and returns an array q of path quality values for
the shortest path from each sensor node to the base station.
The implementation of BestShortestPath is trivial, as it uses
Dijkstra’s algorithm [23] to compute the shortest paths, while
respecting the path quality constraint (5).

The heuristic algorithm maintains a set idNonReachable of
sensor nodes that are not able to reach the base station due
to the violation of the path quality constraints (5) (line 3).
Before entering the main loop of the algorithm, any sensor
nodes in the set idNonReachable are removed from the set of
selected sensor nodes (line 4), and the values of link quality,

base station link quality, and correlation for those sensor
nodes in idNonReachable are set to 0 from the correspond-
ing data using the function SetZero (lines 5–7). The function
SetZero(A, Ids) takes an n× n matrix A, and a set of indices
Ids , and for each index i in Ids sets the value of every possible
pair of (i, j) 1 ≤ j ≤ n in A to zero (A(i, j) = 0 ∧A(j, i) =
0, 1 ≤ j ≤ n), and if A is a one dimensional array, then it only
sets A(i) = 0. In other words, SetZero reflects the unreacha-
bility of the sensor nodes in idNonReachable into the network
data structures (link quality and correlation).

The main loop of the algorithm (line 9) iteratively selects
a sensor node that contributes the least value to the objective
(4) (equivalent to a sensor node with the lowest data utility
weighted by the initial energy), and performs a lookahead move
(lines 10–20) to detect if removing this sensor node violates any
of the constraints. The set idFeasible of feasible sensor nodes is
initialized with the set of selected sensor nodes idSelected (line
8). The set idFeasible is used to keep the track of the sensor
nodes that are potentially removable from the set of selected
sensor nodes idSelected . A lookahead move is performed, by
first creating copies L′ and B′ from L and B, respectively (lines
10–11). We then select a least contributing sensor {idMin} that
minimizes the value of the objective function (lines 12). To per-
form the lookahead move, the link quality data for the sensor
{idMin} is set to zero (lines 13–14), and then the path quality
q is updated (line 15) to discover the nonreachable sensor nodes
idNonReachable (line 16).

If removing the nonreachable sensor nodes in the set
idNonReachable from the set of selected sensor nodes
idSelected (line 17) that causes the violation of the active
sensor constraint (line 18), then the sensor node {idMin} is
removed from the set idFeasible of feasible sensor nodes (line
19), and we skip to the next iteration (line 20). If the looka-
head move does not violate the active sensor constraint, then
we replace the set of selected sensors idSelected and the set of
feasible sensor nodes idFeasible with the potential sensor set
idPotential , and we set the values of link quality and correla-
tion for the nonreachable sensor nodes idNonReachable to zero
using the function SetZero (lines 21–25). The algorithm ends
if there are no more feasible sensor nodes (idFeasible = ∅) or
the active sensor constraint is violated.

V. BAYESIAN INFERENCE AND DATA QUANTIZATION

This section describes how to use BP to infer the missing data
because of the inactive sensor nodes and the data transmission
losses of the active sensor nodes throughout the second phase
of our ASBP protocol.

A. Introduction to BP

BP is a classic algorithm for performing inference on graph-
ical models [8], [9]. In general, it assumes that some observa-
tions are made and the task is to infer the underlying events
behind these observations. Denote yi the observation at node i
and xi the underlying event, i = 1, . . . , N . For the application
of IoT, yi is the reading of sensor i about some phenomenon
that is being monitored, such as the temperature, and xi is
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Fig. 4. Example of a graphical model.

Fig. 5. Graphical depiction of message passing from nodes p and q to the node
i in BP The updated message mij(xj) is then sent to the node j.

the true reading of the phenomenon. Clearly, there are some
statistical dependencies between yi and xi, encoded in a so-
called evidence function φi(xi, yi). Very often, we consider
the observation yi to be fixed and write φi(xi) as a short-hand
of φi(xi, yi). Furthermore, there are also statistical dependen-
cies between the several underlying events xi, encoded in a
so-called potential function φij(xi, xj). In IoT, the potential
function captures spatial correlations between the readings at
nearby sensors.

Given the above notation, the inference of the xi can be for-
mulated as the maximization of the following belief function:

b({xi}Ni=1) =
∏
ij

φij(xi, xj)
∏
i

φi(xi).

A graphical depiction of this model is shown in Fig. 4. The rect-
angles are the observation nodes yi and the circles represent
the underlying events xi. The potential functions are associ-
ated with the links between xi and the evidence functions are
associated with the links between yi and xi.

BP performs inference by passing messages between nodes
in the graph. The message from i to j is defined as

mij(xj) =
∑
xi

φi(xi)φij(xi, xj)
∏

k∈N(i),k �=j

mki(xi)

where N(i) denotes the neighbors of node i. The message
essentially integrates all messages from the neighbors of i,
except j, as well as the local evidence seen at i. Intuitively,
such a message models how likely it is at node i that node j
will be in the state of xj when node i is in the state xi. Thus,
BP performs message passing between nodes until reached con-
vergence, and the inference is done by maximizing the belief at
each node, which is to gather all incoming messages and the
local belief, i.e.,

bi(xi) = φi(xi)
∏

j∈N(i)

mji(xi).

The message passing process in BP is illustrated in Fig. 5.
BP is well established in both theory and practice. For exam-

ple, while it is known that BP is only guaranteed to converge

on tree graphs, loopy BP has been shown to work well in most
cases for graphs with loops [24]. In addition, there are two gen-
eral BP variations which are sum-product and max-product BP,
respectively [25]. The latter is adopted in this paper because of
its efficiency.

B. BP for Inference on IoT

In using BP for inferring the missing data in IoT, we need
to construct a graph to model the correlations between sensor
readings. There are two types of correlations in sensor network.

1) Spatial correlation: Data from different sensors may be
correlated with each other. Note that we do not assume
that strong correlations always exist between data from
nearby sensors. Instead, we compute the correlation coef-
ficients between each pair of sensor nodes from the
observed data. We claim spatial correlations only when
we see large correlation coefficients, regardless of the
spatial distance between two sensors.

2) Temporal correlation: Data from the same sensor may be
correlated over time. Here, we simply assume that the sen-
sor reading at time t is strongly correlated with that at time
t− 1.

Thus, we built our graph as illustrated in Fig. 6 where
xt
i denotes the true reading of sensor i at time t. The link

between xt
i and xt−1

i represents the temporal correlations, with
a temporal potential function defined as

φt
i(x

t
i, x

t−1
i ) = exp

(
− (xt

i − xt−1
i )2

σ2
i

)
.

Similarly, the link between xt
i and xt

j represents the spatial
correlations, with a spatial potential function associated and
defined as

φs
ij(x

t
i, x

t−1
i ) = exp

(
− (xt

i − xt
j)

2

σ2
ij

)
.

Note that the noisy sensor reading yti is omitted from the graph
for the purpose of simplification, and the evidence function
associated with the link between xt

i and yti is defined as

φe
i (x

t
i, y

t
i) = exp

(
− (xt

i − yti)
2

σ2
i

)
.

yti can be missing for two reasons: either sensor i is in the
sleep mode or the packet failed to reach the base station. When
it is missing, we turn the evidence function into a constant,
i.e., φe

i (x
t
i, y

t
i) = 1, for all possible values of xt

i. Such a con-
stant evidence function essentially treats everything as equally
as possible. Intuitively, BP handles missing sensor readings by
reasoning from the past data and the sensor nodes with cor-
related data. Note that σi and σij are parameters that can be
learned from some training data [26].

In comparison with approaches such as the CS-based
approach in [11], BP based on the graph in Fig. 6 is advan-
tageous for several reasons.

1) BP captures the spatial and temporal correlations between
sensors explicitly via a graphical model which is updated
over time. For example, we can disconnect the sensor
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Fig. 6. Graphical model built for WSNs.

nodes when the correlation coefficients drop below some
threshold.

2) BP allows the incremental inference that infers the miss-
ing data at time t from the available data at just time t and
t− 1. In contrast, the CS-based approach in [11] takes
as an input data matrix with missing entries, and thus can
only perform inference in a batch mode for a time interval.

We will demonstrate these advantages and the inference
accuracy in Section VI.

C. Data Quantization

Quantization is a classic technique in signal processing that
has been widely used for data compression [27]. Quantization
of network data saves storage as it encodes the data into
fewer bits. It requires fewer number of transmissions and
smaller packet size. In many applications, a quantized mea-
sure is informative enough to represent aspects of the network.
For example, many heating, ventilation, and air conditioning
(HVAC) sensors only react if temperature or humidity falls
within certain thresholds. In summary, quantized measures are
less fine-grained and lossy; however, there are many advantages
in using a quantized measure.

1) A quantized measure is informative enough for describing
the correlation between the data.

2) A quantized measure can be encoded into a few bits,
saving storage and transmission costs.

3) A quantized measure is coarse and thus cheaper to obtain.
It is also stable and highly adjustable to match the needs
of the network application.

Let the metric to be quantized take on values in the range
[rmin, rmax], and values outside this interval are mapped either
to rmin or rmax. The quantization is done by partitioning the
interval into R bins using R− 1 thresholds, denoted by τ =
{τ1, . . . , τR−1}. Each bin is represented by a value within the
range of the bin, e.g., the centroid point of the bin’s range. Let
the value bi represent the ith bin. A look-up table is used to map
the metric value to bi according to the bin threshold

Q(x) = bi, if τi−1 < x ≤ τi, i = 1, . . . , R. (10)

where τ0 = rmin and τR = rmax. The bin index values
{b1, . . . , bR} are stored in a codebook, and a metric
value can then be represented by a bin index that is
encoded into few bits. For example, Fig. 7 shows six data
x1, . . . , xn quantized into four bins with 2-bit binary indices
b1 = (00)2 = 0, . . . , b4 = (11)2 = 3 according to (10).

Fig. 7. 2-bit uniform quantization on the data x1, . . . , xn that partitions the
interval {rmin, rmax} into four equal bins using τ = {τ1, τ2, τ3}. Each bin is
represented by the centroid point of the bin, which is stored in a codebook. A
metric value is then mapped into a bin index, encoded into 2 bits.

The length of each partition τi − τi−1 is either uniform with
τi − τi−1 = vmax−vmin

R or nonuniform. In general, the thresh-
olds τ are chosen according to the requirements of the applica-
tion, adaptively adjusted, or learned from a set of training data.
For example, consider an indoor temperature monitoring, where
the temperature varies at most between 0◦ and 50◦. Given 0.2◦

temperature accuracy requirement of the application, the min-
imum number of quantization level is (vmax − vmin)/0.2 =
50/0.2 = 250, which implies that at least 8-bit quantization res-
olution (28 = 256 bins) is necessary to satisfy the requirement
of the application.

As we mentioned in this section, the data quantization is
lossy with the error defined as

ε(x) = x− code(bi), for Q(x) = bi

where code maps the code bi to the metric value of the data
x (typically, the centroid point of the bin). The error is upper
bounded by the bin length, given by

ε(x) < τi − τi−1.

The quantization error is inversely proportional to R, whereby a
smaller R leads to a larger ε(x). When R is as large as vmax −
vmin, the quantization becomes equivalent to the rounding of
the real value, which is almost lossless.

VI. EXPERIMENTS

A. Experimental Setup

We experiment with the real data collected from 54 sen-
sor nodes deployed in the Intel Berkeley Research Laboratory
[22]. The data are collected by a base station, and includes
temperature, humidity, light intensity, and voltage values once
every 30 s, throughout a time span of 36 days. The data set
also includes aggregated connectivity data, representing the link
quality between any two sensor nodes, and between sensor
nodes and the base station. In our simulations of the ASBP pro-
tocol, we selected a time interval of 10 h, consisting of 5 rounds
of 2 h, such that at least 30% of data are transmitted successfully
to the base station.

We apply a uniform quantization on the temperature data
between 10th and 90th percentile into 256 bins, where each bin
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Fig. 8. Correlation coefficient matrix represented with jet color map, with
absolute values varying in range [0, 1].

is represented with an 8-bit value in the codebook. The values
outside the interval are mapped to the minimum and maximum
of the interval accordingly.

Fig. 8 demonstrates the absolute values for the correlation
coefficient matrix using the jet color map. We expect that
since the data are highly correlated, the uniform quantized
data are also highly correlated. Our experiments show that 8-
bit quantization resolution introduces at most 15% error in the
data correlation. However, it does not affect the BP prediction
results, as the data are already quantized when received at the
base station.

In our energy consumption evaluations, we consider 14-mA
transmission cost, as reported for the Mica2Dot mote [28], used
in the Intel Berkeley Research Laboratory deployment.

In our simulations, each round is 2 h, where phase one of
a round ends if at least 20 data readings are collected at the
base station from all the sensor nodes. The weights ω1 and ω2

in data utility (3) are chosen to normalize the path quality and
correlation. We expect that at least μ sensor nodes are selected;
hence, the path quality is scaled by the minimum number μ (8)
of sensor nodes (ω1 = μ), because the sum of the correlation is
at least μ we set ω2 = 1. The threshold τ of (5) is set to 0.7.
The base station then solves the sensor selection optimization
problem and initiates the second phase of the ASBP protocol.

B. Results and Analysis

We evaluate the performance of our ASBP in terms of data
utility, energy efficiency, and data prediction accuracy. We
compare the data prediction error of the results of our CP
model, heuristic-based algorithm, and a random sensor selec-
tion. On the inference accuracy, we compare with the CS-based
approach in [11] which we consider as the state-of-the-art. Our
simulation of the ASBP protocol is implemented in C++, and
the CP model is implemented using the CP solver Gecode [29]
(revision 4.2.1), and runs under Mac OS X 10.9.2 64 bit on an
Intel Core i5 2.6 GHz with 3 MB L2 cache and 8 GB RAM.

Fig. 9(a) and (b) compares the total data utility and energy
consumption achieved in one round by the ASBP protocol using
CP, our heuristic-based algorithm, and random sensor selection,
with a minimum of 30% and 70% for the base station link qual-
ity, respectively. For each result, we vary the parameter μ in (8)
to control the total number of selected sensor nodes for data col-
lection. The increase in the minimum base station link quality

to 70% affects the routing of the data in the multihop data col-
lection. It increases the size of the data collection to five hops,
which requires the sensor nodes closer to the base station to
relay also the data for the nodes further away. Hence, the path
quality q[s] is decreased, and the total data utility is reduced.

In our results, the CP sensor selection achieves the optimum
data utility, and the greedy heuristic-based algorithm manages
to find a satisfactory local optimum. The results show that the
general traditional random approach does perform very poorly
compared to the global optimum. The results for the random
sensor selection are computed by taking the mean of the data
utility and energy consumption for ten random sensor selec-
tions. In all cases, the solution of the sensor selection problem
for CP and the heuristic-based algorithm were found in less
than 1 min. We observe that the data utility increases up to 25
selected nodes and then decreases. This is because of the trade-
off between the path quality and the correlation. As the number
of selected sensors increases, the sum of the data correlation
between a selected sensor node and all the other sensor nodes
becomes a larger factor in the data utility term (3) compare to
the path quality term; hence, the data utility decreases. We con-
clude that an efficient sensor selection strategy should select 25
sensor nodes to maintain a balance between the path quality and
the data correlation.

The heuristic-based strategy in Fig. 9(b) fails to find a solu-
tion for more than 30 selected sensor nodes, because our
requirement for reaching the base station is limited to at least
70% link quality, and without backtracking, the greedy algo-
rithm fails at maintaining a route to the base station for all
selected sensor nodes.

The total energy consumption (in terms of the number of
transmission for data collection and node coordination) for the
data transmissions with both settings 30% and 70% on the
minimum base station link quality is shown in Fig. 9(c). The
minimum base station link quality is denoted in the legend of
the plot. We observe that at the same threshold on the base sta-
tion link quality, the energy consumption is almost independent
of the sensor selection strategy. However, the energy consump-
tion is almost doubled as the base station link quality threshold
is increased to 70%, which is due to the additional multihop
relay of the data required to reach the base station.

Fig. 10(a) shows the BP results with the CP model, heuristic-
based algorithm, and random sensor selection strategies, upon
varying the minimum number μ of selected sensor nodes. We
first compute the mean square error (MSE) of the predicted data
versus the ground truth for each sensor node in the temporal
domain. The result is an array of 54 MSE values on the sensor
node predicted data. We then plot the mean of the MSE error
in Fig. 10(a). The results for the random sensor selection are
computed by taking the average of ten runs. The standard devi-
ation (SD) of CP and the heuristic-based algorithm is at most
12%. The CP model with μ = 10 has an average error of about
5%, which indicates that in the temporal domain, in average the
prediction of the BP deviates 5% from the ground truth. At the
same data point, the SD is about 12%, and increasing the num-
ber of selected sensor nodes μ always drops the value of SD.
As we expected, the best sensor selection (by CP) achieves the
minimum error, whereas the random sensor selection does not
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Fig. 9. Data utility and energy consumption for data transmission obtained by simulating the ASBP protocol in one round and solving the sensor selection problem
with the CP model, our heuristic-based algorithm, and random sensor selection. Minimum thresholds of: (a) 30% and (b) 70% were used for the base station link
quality, upon varying the minimum number μ of selected sensor nodes. (c) Energy consumption.

Fig. 10. Prediction MSE of our BP-based approach and the CS-based approach in [11] using the CP model, the heuristic-based algorithm, and the random sensor
selection strategies, upon varying the minimum number μ of active nodes. (a) Prediction error of BP with CP, Heuristic, and random node selection. (b) Prediction
error of BP versus CS using our heuristic-based node selection algorithm. (c) Prediction error of BP versus CS using random node selection.

consider the correlation of the data, and as a result has a higher
prediction error.

The results compared with the energy consumption in
Fig. 9(c) show that we can save up to 80% energy by select-
ing only 10 sensor nodes to be active for the data collection
in each round, while maintaining at most the satisfactory aver-
age error of 5% with an SD of 12% in the prediction accuracy.
In our approach, depending on the application and the required
accuracy, we can adjust the selected number of sensor nodes
as a tradeoff between the energy consumption and data quality
(accuracy of the BP).

On the inference accuracy, we compared our BP-based
approach with the CS-based approach in [11]. In particular, [11]
modeled the estimation of the lost data as a problem of matrix
completion, where an EM matrix is constructed by recording
the data reading of a particular sensor at a particular time. The
EM matrix is incomplete because some data are lost during
transmission and some sensors are inactive, i.e., not selected,
during some time periods. By applying the matrix completion
techniques developed in CS, the missing data in the EM matrix
can also be estimated. While interesting, a drawback of the
matrix completion formulation in [11] is that in order to con-
struct the EM matrix, data must be collected in different sensors
regularly and in a synchronized way, so that the data in the time
dimension are consistent. In contrast, our BP-based approach
makes no such assumption and allows the sensors to collect data
at irregular frequencies or even randomly. This is possible due

to the explicit modeling of the data correlations in time and in
space in the potential functions [9].

Fig. 10(b) and (c) shows the comparisons between our BP-
based approach and the CS-based approach in [11] using the
heuristic-based and random node selection, respectively. It can
be seen that on the heuristic-based node selection, BP is strictly
better than CS. For example, BP achieves 16% lower predic-
tion error compared to CS when μ = 10. On the random node
selection, the two perform similarly. Note that the results on
random node selection are the average of ten runs. Such results
reveal the advantage of BP that the spatio-temorpal correlations
are explicitly encoded in the graph structure and in the potential
functions, which leads to the better accuracy in Fig. 10(b). On
the other hand, in Fig. 10(c), BP builds the graph and learns
the potential functions on randomly selected nodes without
considering the correlations, whereas CS assumes the random
sampling of the data which hold here. Even in such scenarios,
BP still achieves a similar performance as CS.

VII. CONCLUSION

By exploring cloud computing with the IoT, we present a
cloud-based solution that takes into account the link quality
and spatio-temporal correlation of data to minimize energy
consumption by selecting sensors for sampling and relaying
data. We have presented a novel cloud-based ASBP protocol
with energy-efficient data collection for the IoT applications.
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ASBP solves an optimisation problem to select an optimal set of
active sensor nodes that maximizes the data utility and achieves
energy load balancing. In our protocol, BP iteratively infers
the values of the missing data from the stream of active sen-
sor readings. We have also compared our BP prediction results
with the widely used compressive sensing technique [11], and
show that our BP algorithm significantly outperforms com-
pressive sensing. We formulate and solve the active sensor
selection optimization problem using CP, and compare it with
our heuristic-based greedy algorithm.

We have evaluated the performance of our ASBP proto-
col by extensive simulations using real data collected at the
Intel Berkeley Research Lab sensor deployment and their link
quality estimates. The simulation results show that our ASBP
protocol can greatly improve energy-efficiency up to 80%, with
the optimal CP active sensor selection, while maintaining in
average 5% error in the BP data inference.

As future work, we plan to extend our ASBP protocol to a
fully distributed implementation for real deployment, and com-
pare versus our current optimal results. We are also interested
to integrate adaptive sampling rate into our current results, as
well as investigating multisink scenarios.
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